Mengenal Atom

Atom adalah suatu satuan dasar materi, yang terdiri atas inti atom serta awan elektron bermuatan negatif yang mengelilinginya. Inti atom terdiri atas proton yang bermuatan positif, dan neutron yang bermuatan netral (kecuali pada inti atom Hidrogen-1, yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Sekumpulan atom demikian pula dapat berikatan satu sama lainnya, dan membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan disebut sebagai ion. Atom dikelompokkan berdasarkan jumlah proton dan neutron yang terdapat pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.

Istilah atom berasal dari Bahasa Yunani, yang berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf India dan Yunani. Pada abad ke-17 dan ke-18, para kimiawan meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para fisikawan berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa ‘atom’ tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip mekanika kuantum yang digunakan para fisikawan kemudian berhasil memodelkan atom.

Dalam pengamatan sehari-hari, secara relatif atom dianggap sebuah objek yang sangat kecil yang memiliki massa yang secara proporsional kecil pula. Atom hanya dapat dipantau dengan menggunakan peralatan khusus seperti mikroskop gaya atom. Lebih dari 99,9% massa atom berpusat pada inti atom, dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil, yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkan transmutasi, yang mengubah jumlah proton dan neutron pada inti. Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan foton yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur, dan mempengaruhi sifat-sifat magnetis atom tersebut.

Walaupun awalnya kata atom berarti suatu partikel yang tidak dapat dipotong-potong lagi menjadi partikel yang lebih kecil, namun dalam perkembangannya para ilmuwan modern dapat membuktikan bahwa atom  tersusun atas berbagai partikel-partikel kecil yang disebut partikel subatom. Partikel-partikel penyusun atom ini adalah elektron, proton, dan neutron. Namun terdapat pengecualian pada hidrogen-1 yang tidak mempunyai neutron. Demikian pula halnya pada ion hidrogen positif H+.

Dari kesemua partikel subatom ini, elektron adalah yang paling ringan, dengan massa elektron sebesar 9,11 × 10−31 kg dan mempunyai muatan negatif. Ukuran elektron sangatlah kecil sedemikiannya tiada teknik pengukuran yang dapat digunakan untuk mengukur ukurannya. Proton memiliki muatan positif dan massa 1.836 kali lebih berat daripada elektron ( atau sekitar 1,6726 × 10−27 kg). Neutron tidak bermuatan listrik dan bermassa bebas 1.839 kali massa elektron atau (1,6929 × 10−27 kg atau sama dengan massa proton).

Dalam model standar fisika, baik proton dan neutron terdiri dari partikel elementer yang disebut kuark. Kuark termasuk kedalam golongan partikel fermion dan merupakan salah satu dari dua bahan penyusun materi dasar (yang lainnya adalah lepton). Terdapat enam jenis kuark dan tiap-tiap kuark tersebut memiliki muatan listrik fraksional sebesar +2/3 ataupun −1/3. Proton terdiri dari dua kuark naik dan satu kuark turun, manakala neutron terdiri dari satu kuark naik dan dua kuark turun. Perbedaan komposisi kuark ini mempengaruhi perbedaan massa dan muatan antara dua partikel tersebut. Kuark terikat bersama oleh gaya nuklir kuat yang diperantarai oleh gluon. Gluon adalah anggota dari boson tolok yang merupakan perantara gaya-gaya fisika

Inti atom terdiri atas proton dan neutron yang terikat bersama pada pusat atom. Secara kolektif, proton dan neutron tersebut disebut sebagai nukleon (partikel penyusun inti). Diameter inti atom berkisar antara 10-15 hingga 10-14m. Jari-jari inti diperkirakan sama dengan \begin{smallmatrix}1,07 \sqrt[3]{A}\end{smallmatrix} fm, dengan A adalah jumlah nukleon. Hal ini sangatlah kecil dibandingkan dengan jari-jari atom. Nukleon-nukleon tersebut terikat bersama oleh gaya tarik-menarik potensial yang disebut gaya kuat residual. Pada jarak lebih kecil daripada 2,5 fm, gaya ini lebih kuat daripada gaya elektrostatik yang menyebabkan proton saling tolak menolak.

Atom dari unsur kimia yang sama memiliki jumlah proton yang sama, disebut nomor atom. Suatu unsur dapat memiliki jumlah neutron yang bervariasi. Variasi ini disebut sebagai isotop. Jumlah proton dan neutron suatu atom akan menentukan nuklida atom tersebut, sedangkan jumlah neutron relatif terhadap jumlah proton akan menentukan stabilitas inti atom, dengan isotop unsur tertentu akan menjalankan peluruhan radioaktif.

Neutron dan proton adalah dua jenis fermion yang berbeda. Asas pengecualian Pauli melarang adanya keberadaan fermion yang identik (seperti misalnya proton berganda) menduduki suatu keadaan fisik kuantum yang sama pada waktu yang sama. Oleh karena itu, setiap proton dalam inti atom harusnya menduduki keadaan kuantum yang berbeda dengan aras energinya masing-masing. Asas Pauli ini juga berlaku untuk neutron. Pelarangan ini tidak berlaku bagi proton dan neutron yang menduduki keadaan kuantum yang sama.

Untuk atom dengan nomor atom yang rendah, inti atom yang memiliki jumlah proton lebih banyak daripada neutron berpotensi jatuh ke keadaan energi yang lebih rendah melalui peluruhan radioaktif yang menyebabkan jumlah proton dan neutron seimbang. Oleh karena itu, atom dengan jumlah proton dan neutron yang berimbang lebih stabil dan cenderung tidak meluruh. Namun, dengan meningkatnya nomor atom, gaya tolak-menolak antar proton membuat inti atom memerlukan proporsi neutron yang lebih tinggi lagi untuk menjaga stabilitasnya. Pada inti yang paling berat, rasio neutron per proton yang diperlukan untuk menjaga stabilitasnya akan meningkat menjadi 1,5.

Gambar di atas merupakan bentuk fusi nuklir yang menghasilkan inti deuterium (terdiri dari satu proton dan satu neutron). Satu positron (e+) dipancarkan bersamaan dengan neutrino elektron.

Jumlah proton dan neutron pada inti atom dapat diubah, walaupun hal ini memerlukan energi yang sangat tinggi oleh karena gaya atraksinya yang kuat. Fusi nuklir terjadi ketika banyak partikel atom bergabung membentuk inti yang lebih berat. Sebagai contoh, pada inti Matahari, proton memerlukan energi sekitar 3–10 keV untuk mengatasi gaya tolak-menolak antar sesamanya dan bergabung menjadi satu inti. Fisi nuklir merupakan kebalikan dari proses fusi. Pada fisi nuklir, inti dipecah menjadi dua inti yang lebih kecil. Hal ini biasanya terjadi melalui peluruhan radioaktif. Inti atom juga dapat diubah melalui penembakan partikel subatom berenergi tinggi. Apabila hal ini mengubah jumlah proton dalam inti, atom tersebut akan berubah unsurnya.

Jika massa inti setelah terjadinya reaksi fusi lebih kecil daripada jumlah massa partikel awal penyusunnya, maka perbedaan ini disebabkan oleh pelepasan pancaran energi (misalnya sinar gamma), sebagaimana yang ditemukan pada rumus kesetaraan massa-energi Einstein, Emc2, dengan m adalah massa yang hilang dan c adalah kecepatan cahaya. Defisit ini merupakan bagian dari energi pengikatan inti yang baru.

Fusi dua inti yang menghasilkan inti yang lebih besar dengan nomor atom lebih rendah daripada besi dan nikel (jumlah total nukleon sama dengan 60) biasanya bersifat eksotermik, yang berarti bahwa proses ini melepaskan energi. Adalah proses pelepasan energi inilah yang membuat fusi nuklir pada bintang dapat dipertahankan. Untuk inti yang lebih berat, energi pengikatan per nukleon dalam inti mulai menurun. Ini berarti bahwa proses fusi akan bersifat endotermik.

Elektron dalam suatu atom ditarik oleh proton dalam inti atom melalui gaya elektromagnetik. Gaya ini mengikat elektron dalam sumur potensi elektrostatik di sekitar inti. Hal ini berarti bahwa energi luar diperlukan agar elektron dapat lolos dari atom. Semakin dekat suatu elektron dalam inti, semakin besar gaya atraksinya, sehingga elektron yang berada dekat dengan pusat sumur potensi memerlukan energi yang lebih besar untuk lolos.

Elektron, sama seperti partikel lainnya, memiliki sifat seperti partikel maupun seperti gelombang (dualisme gelombang-partikel). Awan elektron adalah suatu daerah dalam sumur potensi di mana tiap-tiap elektron menghasilkan sejenis gelombang diam (yaitu gelombang yang tidak bergerak relatif terhadap inti) tiga dimensi. Perilaku ini ditentukan oleh orbital atom, yakni suatu fungsi matematika yang menghitung probabilitas suatu elektron akan muncul pada suatu lokasi tertentu ketika posisinya diukur. Hanya akan ada satu himpunan orbital tertentu yang berada disekitar inti, karena pola-pola gelombang lainnya akan dengan cepat meluruh menjadi bentuk yang lebih stabil.

Fungsi gelombang dari lima orbital atom pertama. Tiga orbital 2p memperlihatkan satu biidang simpul.

Tiap-tiap orbital atom berkoresponden terhadap aras energi elektron tertentu. Elektron dapat berubah keadaannya ke aras energi yang lebih tinggi dengan menyerap sebuah foton. Selain dapat naik menuju aras energi yang lebih tinggi, suatu elektron dapat pula turun ke keadaan energi yang lebih rendah dengan memancarkan energi yang berlebih sebagai foton.

Energi yang diperlukan untuk melepaskan ataupun menambah satu elektron (energi pengikatan elektron) adalah lebih kecil daripada energi pengikatan nukleon. Sebagai contohnya, hanya diperlukan 13,6 eV untuk melepaskan elektron dari atom hidrogen. Bandingkan dengan energi sebesar 2,3 MeV yang diperlukan untuk memecah inti deuterium. Atom bermuatan listrik netral oleh karena jumlah proton dan elektronnya yang sama. Atom yang kekurangan ataupun kelebihan elektron disebut sebagai ion. Elektron yang terletak paling luar dari inti dapat ditransfer ataupun dibagi ke atom terdekat lainnya. Dengan cara inilah, atom dapat saling berikatan membentuk molekul

About these ads

9 Comments

  1. nanya donk…

    di inti atom kan.. ada proton n neutron…yang mengikat mereka yaitu gaya ikat inti .. ato force nukler..

    gaya ini dihasilkan oleh apa??/ tolong d jawab dengan rinci

    • Makasih buat pertanyaannya :D

      Gaya yang bekerja pada inti atom (interaksi antara proton dan neutron) dikenal sebagai gaya kuat (strong force) atau gaya nuklir. Gaya ini bertanggung jawab untuk mengikat proton dan neutron menjadi inti atom. Gaya ini dapat dipahami sebagai pertukaran meson ringan, seperti pion.

      Ada pula yang mengatakan gaya ini sebagai gaya kuat residual. Para ilmuwan saat ini percaya bahwa gaya ini adalah akibat dari kromodinamika kuantum (quantum chromodynamics, atau disingkat QCD). Istilah ini muncul pada dasawarsa 1970-an saat QCD sedang dikembangkan. Sebelumnya gaya kuat nuklir merujuk pada potensial internukleon. Setelah model quark diverifikasi, interaksi kuat diartikan sebagai QCD.

      Pembahasannya memang agak sedikit ribet karena menyangkut bahasan fisika partikel. Pembahasannya secara lebih jelas akan saya paparkan kemudian

  2. yanuardi

    O……………………….
    pada atom terdapat proton dan neutron yeah

    • iya, kalo lebih jauh lagi neutron terdiri dari partikel yang lebih kecil lagi lho :D

Trackbacks

  1. Membuat ledakan nuklir dari sebatang bolpoin « Another Satria's Project
  2. Berkenalan dengan Elektron « Another Satria's Project
  3. Mengenal Fisika Partikel « Another Satria's Project
  4. Panel Photovoltaic « Another Satria's Project
  5. Perbedaan partikel dan butiran (grain) - kusnantomukti

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 39 other followers

%d bloggers like this: